Name

Date

Period

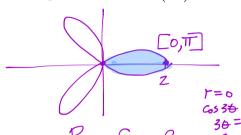
Worksheet 8.2—Polar Area

Show all work. Calculator permitted except unless specifically stated.

Short Answer: Sketch a graph, shade the region, and find the area.

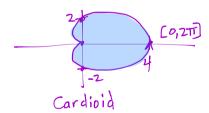
(No Calculator)

1. one petal of $r = 2\cos(3\theta)$



Area = (2) (1) 5 (2 cos(30)) d7

3. interior of $r = 2 + 2\cos\theta$ (no calculator)



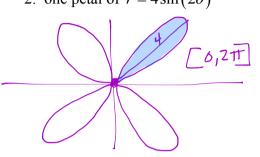
Area =
$$\frac{1}{2} \int_{0}^{2\pi} (2+2\cos\theta) d\theta$$

= $\frac{1}{2} \int_{0}^{2\pi} (4+8\cos\theta) + 4\cos^{2}\theta d\theta$
= $\frac{1}{2} (4) \int_{0}^{2\pi} (1+2\cos\theta + \frac{1}{2}(1+\cos^{2}\theta)) d\theta$
= $2 \int_{0}^{2\pi} (\frac{3}{2} + 2\cos\theta + \frac{1}{2}\cos^{2}\theta) d\theta$
= $2 \left[\frac{3}{2}\theta + 2\sin\theta + \frac{1}{4}\sin^{2}\theta \right]_{0}^{2\pi}$
= $2 \left[(3\pi + 0 + 0) - (0 + 0 + \theta) \right]$

Page 1 of 8

(No Calculator)

2. one petal of $r = 4\sin(2\theta)$

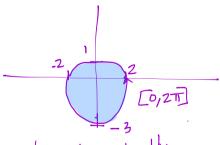


45 in 20 = 0
5 in 20 = 0
5 20 = 0
120 = 11
50 = 0
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 10
100 = 1

Rose Curve

Arex= \(\frac{1}{2}\)\ \(\frac{1}{

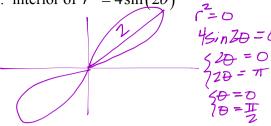
4. interior of $r = 2 - \sin \theta$ (no calculator)



 $\begin{aligned}
d_{1} & \text{Mpled cardioid/limagon} \\
Area &= \frac{1}{2} \int_{0}^{2\pi} (2 - \sin \theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{6} \sin \theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{2} (1 + \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{2} (1 + \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{2} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{2} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{2} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{2} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{2} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{2} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{2} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{2} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{2} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{2} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{2} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{2} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{2} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{2} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{3} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{3} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{3} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{3} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{3} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{3} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{3} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{3} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{3} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{3} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{3} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{3} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \sin \theta + \frac{1}{3} \cos 2\theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \cos \theta + \frac{1}{3} \cos \theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \cos \theta) d\theta \\
&= \frac{1}{2} \int_{0}^{2\pi} (4 - \frac{1}{3} \cos \theta) d\theta \\
&= \frac{1$

Calculus Maximus WS 8.2: Polar Area

5. interior of $r^2 = 4\sin(2\theta)$



$$Area = \frac{1}{2} \int_{0}^{\pi/2} ds \, ds \, d\theta$$

$$= \frac{1}{2} \int_{0}^{\pi/2} ds \, in \, 2\theta \, d\theta$$

$$= 2 \int_{0}^{\pi/2} s \, in \, 2\theta \, d\theta$$

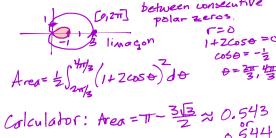
$$= -2 \left(\frac{1}{2}\right) \cos 2\theta \int_{0}^{\pi/2}$$

$$= -\left[\cos \pi - \cos \theta\right]$$

$$= -\left[-1 - 1\right]$$

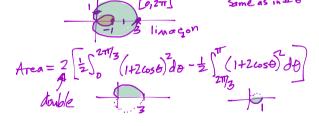
$$= 2 \quad (one petal)$$
on, total area (of both petals)

6. inner loop of $r = 1 + 2\cos\theta$

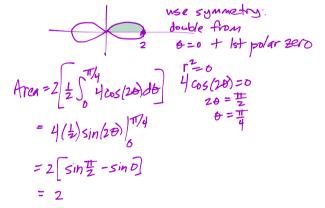


so, total area (of both petals) is 2(2) = 4

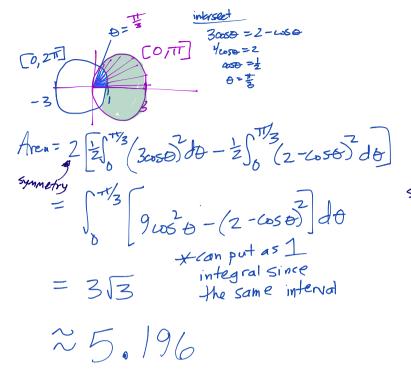
7. between the loops of $r = 1 + 2\cos\theta$

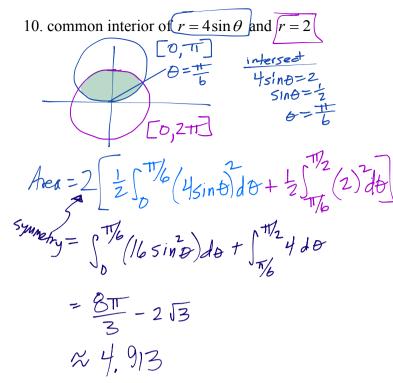


= T+313 ~8.337, 8.338 8. one loop of $r^2 = 4\cos(2\theta)$



9. inside $r = 3\cos\theta$ and outside $r = 2 - \cos\theta$



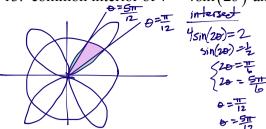


11. inside $r = 3\sin\theta$ and outside $r = 1 + \sin\theta$ $\frac{1}{3}\sin\theta = 1 + \sin\theta$ $\sin\theta = \frac{1}{2}$ $\frac{1}{3}\sin\theta = 1 + \sin\theta$ $\sin\theta = \frac{1}{3}\sin\theta$ $\sin\theta = 1 + \sin\theta$ $\sin\theta = 1 + \sin\theta$ $\cos\theta = 1 + \sin\theta$ $\sin\theta = 1 + \sin\theta$ $\cos\theta = 1 + \sin\theta$ \cos

12. common interior of $r = 3\cos\theta$ and $r = 1 + \cos\theta$ $\frac{\partial}{\partial z} = \frac{1}{3}$ $\frac{\partial}{\partial z} = \frac{\partial}{\partial z} = \frac{1}{3}$ $\frac{\partial}{\partial z} = \frac{\partial}{\partial z} = \frac{1}{3}$ $\frac{\partial}{\partial z} =$

Calculus Maximus WS 8.2: Polar Area

13. common interior of $r = 4\sin(2\theta)$ and r = 2

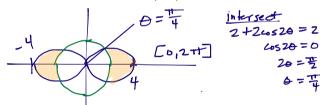


Find 1 sliver, then
multiply by 4 pertals

Area = $4[2.\frac{1}{2}\int_{0}^{\pi/2}(4\sin(2\theta))^{2}d\theta + \frac{1}{2}\int_{0}^{5\pi/2}(2)d\theta]$ = $4\int_{0}^{\pi/2}16\sin^{2}(2\theta)d\theta + \int_{0}^{5\pi/2}8d\theta$ = $64\int_{0}^{\pi/2}\sin^{2}2\theta d\theta + \int_{0}^{5\pi/2}8d\theta$

15. inside $r = 2 + 2\cos(2\theta)$ and outside r = 2

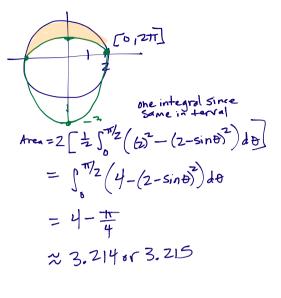
= 9.826 or 9.827



Arex =
$$4\left[\frac{1}{2}\int_{0}^{\pi/4}\left((2+2652\theta)^{2}-(2)^{2}\right)d\theta\right]$$

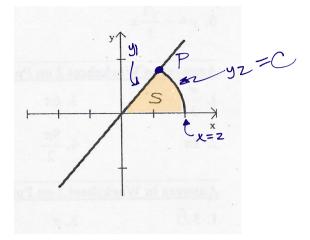
= $2\int_{0}^{\pi/4}\left((2+2652\theta)^{2}-4\right)d\theta$
= $11,5707$

14. inside r = 2 and outside $r = 2 - \sin \theta$



Free Response

16. The figure shows the graphs of the line $y = \frac{2}{3}x$ and the curve C given by $y = \sqrt{1 - \frac{x^2}{4}}$. Let S be the region in the first quadrant bounded by the two graphs and the x-axis. The line and the curve intersect at point P.



(a) Find the coordinates of P.

intersect
$$y(1.z) = \frac{1}{3}(1.z)$$

 $\frac{1}{3}x = \sqrt{1-\frac{x^2}{4}}$ $y(1.z) = \frac{1}{3}(1.z)$
 $y(1.z) = \frac{1}{3}(1.z)$

(b) Set up and evaluate an integral expression with respect to *x* that gives the area of *S*.

Area =
$$\int_{0}^{6/5} (\frac{2}{3}x - \delta) dx + \int_{6/5}^{2} (\sqrt{1 - \frac{x^{2}}{4}} - \delta) dx$$

= 0.927

(b) Find a polar equation to represent curve C.

(d) Use the polar equation found in (c) to set up and evaluate an integral expression with respect to the polar angle θ that gives the area of S.

d) Use the polar equation found in (c) to set up and eval polar angle
$$\theta$$
 that gives the area of S .

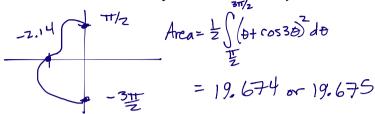
$$y = \frac{1}{3} \times 4$$

$$rsin\theta = \frac{1}{3} rcos\theta$$

$$tan\theta = \frac{1}{3}$$

$$\theta = tan^{-1}(\frac{1}{3})$$

- 17. A curve is drawn in the *xy*-plane and is described by the equation in polar coordinates $r = \theta + \cos(3\theta)$ for $\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$, where *r* is measured in meters and θ is measured in radians.
 - (a) Find the area bounded by the curve and the y-axis.



(b) Find the angle θ that corresponds to the point on the curve with y-coordinate -1.

$$y = -1$$

$$r \sin \theta = -1$$

$$(\theta + \cos 3\theta) \sin \theta = -1$$

$$(\theta + \cos 3\theta) \sin \theta + 1 = 0$$

$$y_1 (function Mode)$$

$$\theta = 3.484 \text{ or } 3.486$$

(c) For what values of θ , $\underline{\pi} \le \theta \le \frac{3\pi}{2}$ is $\frac{dr}{d\theta}$ positive? What does this say about r?

(d) Find the value of θ on the interval $\underline{\pi} \le \theta \le \frac{3\pi}{2}$ that corresponds to the point on the curve with the greatest distance from the origin. What is this greatest distance? Justify your answer.

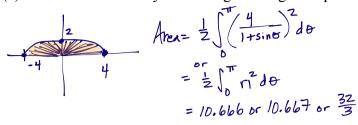
Maximize
$$\Gamma$$
 $\frac{d\Gamma}{d\theta} = 0$
 $\Gamma = 2.207 = A \text{ (store ost)}$
 $\Gamma = 3.028 = B$
 $\Gamma = 4.302 = C$

$$r(\frac{1}{2})=1.570$$

 $r(A)=3.160$
 $r(B)=2.085$
 $r(C)=5.244$
 $r(C)=4.712$

So, graph is furthest from pole/origin at D = 4.302 radians, At this angle, the graph is 5.244 units from the pole/origin.

- 18. A region *R* in the *xy*-plane is bounded below by the *x*-axis and above by the polar curve defined by $\Gamma = \frac{4}{1 + \sin \theta}$ for $0 \le \theta \le \pi$.
 - (a) Find the area of R by evaluating an integral in polar coordinates.



(b) The curve resembles an arch of the parabola $8y = 16 - x^2$. Convert the polar equation to rectangular coordinates, and prove that the curves are the same.

(c) Set up an integral in rectangular coordinates that gives the area of R.

Area =
$$2\int_{0}^{4} (2 - \frac{1}{8}x^{2}) dx$$

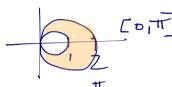
Area = $2\int_{0}^{4} (2 - \frac{1}{8}x^{2}) dx$

Without symmetry

Area = $\int_{-4}^{4} (2 - \frac{1}{8}x^{2}) dx$

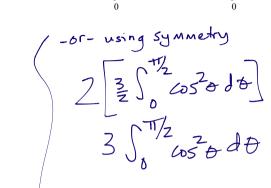
Multiple Choice

- 19. Which of the following is equal to the area of the region inside the polar curve $r = 2\cos\theta$ and outside the polar curve $r = \cos \theta$?
- (A) $3\int_{0}^{2} \cos^{2}\theta d\theta$ (B) $3\int_{0}^{\pi} \cos^{2}\theta d\theta$ (C) $\frac{3}{2}\int_{0}^{\pi} \cos^{2}\theta d\theta$ (D) $3\int_{0}^{\pi} \cos\theta d\theta$ (E) $3\int_{0}^{\pi} \cos\theta d\theta$



Area =
$$\frac{1}{2}\int_{0}^{\pi} (2as\theta)^{2} - (as\theta)^{2} d\theta$$

= $\frac{1}{2}\int_{0}^{\pi} (4as^{2}\theta - as^{2}\theta) d\theta$
= $\frac{3}{2}\int_{0}^{\pi} (as^{2}\theta - as^{2}\theta) d\theta$ (Not there!)



20. The area of the region enclosed by the polar graph of $r = \sqrt{3 + \cos \theta}$ is given by which integral?

(A)
$$\int_{0}^{2\pi} \sqrt{3 + \cos \theta} d\theta$$

(B)
$$\int_{0}^{\pi} \sqrt{3 + \cos \theta} d\theta$$

(A)
$$\int_{0}^{2\pi} \sqrt{3 + \cos \theta} d\theta$$
 (B)
$$\int_{0}^{\pi} \sqrt{3 + \cos \theta} d\theta$$
 (C)
$$2 \int_{0}^{\pi/2} (3 + \cos \theta) d\theta$$

$$\int_{0}^{\pi} (3 + \cos \theta) d\theta$$

(E)
$$\int_{0}^{\pi/2} \sqrt{3 + \cos \theta} d\theta$$

$$Area = \frac{1}{2} \int_{0}^{2\pi} (3 + \cos\theta) d\theta \quad (E) \int_{0}^{\pi/2} \sqrt{3 + \cos\theta} d\theta$$

$$= \frac{1}{2} \int_{0}^{2\pi} (3 + \cos\theta) d\theta \quad (not Mere)$$

$$= \int_{0}^{\pi/2} (3 + \cos\theta) d\theta \quad (not Mere)$$

$$= \int_{0}^{\pi/2} (3 + \cos\theta) d\theta$$

-or-using X-axis symmetry

Area =
$$2\left[\frac{1}{2}\int_{0}^{\pi}(3+\cos\theta)d\theta\right]$$

= $\int_{0}^{\pi}(3+\cos\theta)d\theta$

21. The area enclosed by one petal of the 3-petaled rose curve $r = 4\cos(3\theta)$ is given by which integral?

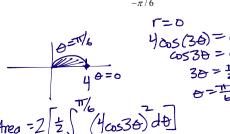
(A)
$$16 \int_{-\pi/3}^{\pi/3} \cos(3\theta) d\theta$$
 (B) $8 \int_{-\pi/6}^{\pi/6} \cos(3\theta) d\theta$ (C) $8 \int_{-\pi/3}^{\pi/3} \cos^2(3\theta) d\theta$ (D) $16 \int_{-\pi/6}^{\pi/6} \cos(3\theta) d\theta$ (E) $8 \int_{-\pi/6}^{\pi/6} \cos^2(3\theta) d\theta$

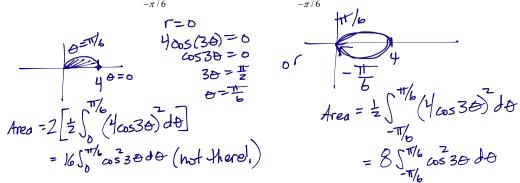
(B)
$$8 \int_{-\pi/6}^{\pi/6} \cos(3\theta) d\theta$$

(C)
$$8 \int_{-\pi/3}^{\pi/3} \cos^2(3\theta) d\theta$$

(D)
$$16 \int_{0}^{\pi/6} \cos(3\theta) d\theta$$

(E)
$$8 \int_{0}^{\pi/6} \cos^2(3\theta) d\theta$$





Page 8 of 8