Volumes of Cross Sections

(Calculator Permitted) Let R be the region bounded by the graphs of $y=\sqrt{x}, y=e^{-x}$, and the y-axis.
(a) Find the area of R.
(b) Find the volume of the solid generated when R is revolved about the line $y=-1$.
(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a semicircle whose diameter runs from the graph of $y=\sqrt{x}$ to the graph of $y=e^{-x}$. Find the volume of this solid.
(Calculator Permitted) The base of the volume of a solid is the region bounded by the curve $y=2+\sin x$, the x-axis, $x=0$, and $x=\frac{3 \pi}{2}$. Find the volume of the solids whose cross sections perpendicular to the x-axis are the following:
(a) Squares
(b) Rectangles whose height is 3 times the base
(c) Equilateral triangles
(d) Isosceles right triangles with a leg on the base
(e) Isosceles triangles with hypotenuse on the base
(f) Semi-circles
(g) Quarter-circles

