Strategy for Testing Series: Solutions

1. Since $(-5)^{-n}=(-1 / 5)^{n}$, this is a geometric series. Because $|-1 / 5|<1$, it converges.
2. Since $n^{2}<n^{2}+6 n=n(n+6)$ for all $n \geq 0$, we have

$$
\frac{1}{n(n+6)}<\frac{1}{n^{2}}
$$

Because $\sum 1 / n^{2}$ converges (it's a p-series with $p=2>1$), the comparison test implies that $\sum 1 /(n(n+6))$ also converges.
3. Clearly, the sequence $a_{n}=1 /(50 n)$ is decreasing and converges to 0 . Thus, the alternating series test implies that $\sum(-1)^{n+1} a_{n}$ converges.
4. Using l'Hôpital's rule, we have

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\ln n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{2 \sqrt{n}}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{2}=\infty
$$

Hence, the $\lim _{n \rightarrow \infty}(-1)^{n} \frac{\sqrt{n}}{\ln n}$ doesn't exist and therefore the series $\sum(-1)^{n+1} \frac{\sqrt{n}}{\ln n}$ diverges.
5. Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{\frac{r^{n+1}}{(n+1)^{r}}}{\frac{r^{n}}{n^{r}}}=\lim _{n \rightarrow \infty} \frac{r n^{r}}{(n+1)^{r}}=\lim _{n \rightarrow \infty} r\left(\frac{n}{n+1}\right)^{r}=r<1,
$$

and therefore the series converges.
6. If $f(n)=\left(n^{2}-n\right)^{-1 / 2}$, then $f^{\prime}(n)=-\frac{1}{2}\left(n^{2}-n\right)^{-3 / 2}(2 n-1)$. Thus, when $n>1$, $f^{\prime}(n)<0$ and $f(n)$ is decreasing. Moreover, we have

$$
\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n(n-1)}}=0
$$

Therefore, the alternating series test implies $\sum 1 / \sqrt{n(n-1)}$ converges.
7. Since $n^{3}<n^{3}+2$, we have

$$
\frac{\sqrt{n} \ln (n)}{n^{3}+2}<\frac{\sqrt{n} \ln (n)}{n^{3}} .
$$

Furthermore, because $\ln (n)<n$ for all $n>0^{1}$, we obtain

$$
\frac{\sqrt{n} \ln (n)}{n^{3}+2}<\frac{\sqrt{n} n}{n^{3}}=n^{-3 / 2} .
$$

Now, the series $\sum n^{-3 / 2}$ converges (it's a p-series with $p=3 / 2>1$) and hence the comparison test implies that the series $\sum \frac{\sqrt{n} \ln (n)}{n^{3}+2}$ also converges.

[^0]8. Since e^{x} is a strictly increasing function, $e^{1 / n} \leq e$ for all $n \geq 1$. Hence, we have
$$
\frac{e^{1 / n}}{n^{3 / 2}} \leq \frac{e}{n^{3 / 2}}
$$

Since $\sum e n^{-3 / 2}$ converges (it's a p-series with $p=3 / 2>1$), the comparison test implies that $\sum e^{1 / n} n^{-3 / 2}$ also converges.
9. If $f(n)=\frac{(n+2)(n+3)}{(n+1)^{3}}$ then

$$
f^{\prime}(n)=\frac{(2 n+5)(n+1)^{3}-3\left(n^{2}+5 n+6\right)(n+1)^{2}}{(n+1)^{6}}=-\frac{n^{2}+8 n+13}{(n+1)^{4}} .
$$

When $n \geq 0, f^{\prime}(n)<0$ and $f(n)$ is decreasing. Moreover,

$$
\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} \frac{(n+1)(n+2)}{(n+1)^{3}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{3}}=0
$$

Therefore, the alternating series test implies $\sum(-1)^{n} \frac{(n+1)(n+2)}{(n+1)^{3}}$ converges.
10. Since

$$
\frac{n^{n}}{n!}=\left(\frac{n}{n}\right)\left(\frac{n}{n-1}\right)\left(\frac{n}{n-2}\right) \cdots\left(\frac{n}{2}\right)\left(\frac{n}{1}\right)>1
$$

the limit $\lim _{n \rightarrow \infty} \frac{(-1)^{n} n^{n}}{n!}$ is not zero and hence the series $\sum \frac{(-1)^{n} n^{n}}{n!}$ diverges.
11. For all $n>2$, we have

$$
\frac{n!}{n^{n}}=\left(\frac{n}{n}\right)\left(\frac{n-1}{n}\right)\left(\frac{n-2}{n}\right) \cdots\left(\frac{2}{n}\right)\left(\frac{1}{n}\right)<\left(\frac{2}{n}\right)\left(\frac{1}{n}\right)=\frac{2}{n^{2}} .
$$

Since $\sum 2 n^{-2}$ converges (it's a p-series with $p=2>1$), the comparison test implies that $\sum \frac{n!}{n^{n}}$ converges. Finally, the absolute convergence test implies that the series $\sum(-1)^{n} \frac{n!}{n^{n}}$ also converges.
12. Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{\frac{e^{n+1}}{(n+1)!}}{\frac{e^{n}}{n!}}=\lim _{n \rightarrow \infty} \frac{e}{n+1}=0<1,
$$

and hence the series $\sum \frac{e^{n}}{n!}$ converges.
13. Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{\frac{(n+1)^{2}(n+1)!}{(2 n+2)!}}{\frac{n^{2} n!}{(2 n)!}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}(n+1)}{(2 n+2)(2 n+1) n^{2}}=\lim _{n \rightarrow \infty} \frac{n^{3}}{n^{4}}=0<1,
$$

and therefore the series $\sum \frac{n^{2} n!}{(2 n)!}$ converges.
14. Since $n!<n!+2$, we have

$$
\frac{3^{n}}{n!+2}<\frac{3^{n}}{n!}
$$

Now, applying the ratio test to the series $\sum \frac{3^{n}}{n!}$, we obtain

$$
\lim _{n \rightarrow \infty} \frac{\frac{3^{n+1}}{(n+1)!}}{\frac{3^{n}}{n!}}=\lim _{n \rightarrow \infty} \frac{3}{n+1}=0<1, .
$$

Thus, the series $\sum \frac{3^{n}}{n!}$ converges and the comparison test implies that $\sum \frac{3^{n}}{n!+2}$ also converges.
15. Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{\frac{n+1}{(\ln (n+1))^{n+1}}}{\frac{n}{(\ln n)^{n}}}=\lim _{n \rightarrow \infty} \frac{n+1}{n \ln (n+1)} \cdot\left(\frac{\ln n}{\ln (n+1)}\right)^{n} .
$$

Since $\ln x$ is a strictly increasing function, $\ln n<\ln (n+1)$ and $\frac{\ln n}{\ln (n+1)}<1$. Hence,

$$
0 \leq \lim _{n \rightarrow \infty} \frac{n+1}{n \ln (n+1)} \cdot\left(\frac{\ln n}{\ln (n+1)}\right)^{n} \leq \lim _{n \rightarrow \infty} \frac{n+1}{n \ln (n+1)}=\lim _{n \rightarrow \infty} \frac{1}{\ln (n+1)+\frac{n}{n+1}}=0
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{n+1}{n \ln (n+1)} \cdot\left(\frac{\ln n}{\ln (n+1)}\right)^{n}=0<1$ and the series $\sum \frac{n}{(\ln n)^{n}}$ converges.
16. Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{\frac{(n+1)^{6} 5^{n+1}}{(n+2)!}}{\frac{n^{6} 5^{n}}{(n+1)!}}=\lim _{n \rightarrow \infty} \frac{5(n+1)^{6}}{n^{6}(n+2)}=\lim _{n \rightarrow \infty} \frac{5 n^{6}}{n^{7}}=0<1,
$$

and hence the series $\sum \frac{n^{6} 5^{n}}{(n+1)!}$ converges.
17. Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{\frac{e^{n+1}}{(\ln (n+1))^{n+1}}}{\frac{e^{n}}{(\ln n)^{n}}}=\lim _{n \rightarrow \infty} \frac{e}{\ln (n+1)}\left(\frac{\ln n}{\ln (n+1)}\right)^{n} .
$$

Because $\ln x$ is a strictly increasing function, $\ln n<\ln (n+1)$ and thus $\frac{\ln n}{\ln (n+1)}<1$. It follows that

$$
0 \leq \lim _{n \rightarrow \infty} \frac{e}{\ln (n+1)}\left(\frac{\ln n}{\ln n+1}\right)^{n} \leq \lim _{n \rightarrow \infty} \frac{e}{\ln (n+1)}=0
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{e}{\ln (n+1)}\left(\frac{\ln n}{\ln n+1}\right)^{n}=0<1$ and the series $\sum \frac{e^{n}}{(\ln n)^{n}}$ converges.
18. Since $|\sin (n \pi / 7)| \leq 1$, we have

$$
\left|\frac{\sin (n \pi / 7)}{n^{3}}\right| \leq \frac{1}{n^{3}}
$$

Because the series $\sum n^{-3}$ converges (it's a p-series and $p=3>1$), the comparison test implies that the series $\sum\left|\frac{\sin (n \pi / 7)}{n^{3}}\right|$ converges. Finally, the absolute convergence test implies $\sum \frac{\sin (n \pi / 7)}{n^{3}}$ converges.
19. Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{\left|\frac{(-2)^{n+1}}{(n+1)!}\right|}{\left|\frac{(-2)^{n}}{n!}\right|}=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0<1
$$

and therefore the series $\sum \frac{(-2)^{n}}{n!}$ converges.
20. For all positive integers n, we have

$$
\left(1+\frac{1}{n}\right)^{n} \geq 1
$$

It follows that $\lim _{n \rightarrow \infty}(-1)^{n}\left(1+\frac{1}{n}\right)^{n} \neq 0$ and hence the series $\sum(-1)^{n}\left(1+\frac{1}{n}\right)^{n}$ diverges.
21. Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{\left|\frac{(-1)^{n+1}}{(2 n+3)!}\right|}{\left|\frac{(-1)^{n}}{(2 n+1)!}\right|}=\lim _{n \rightarrow \infty} \frac{(2 n+1)!}{(2 n+3)!}=\lim _{n \rightarrow \infty} \frac{1}{(2 n+3)(2 n+2)}=0<1
$$

Therefore, the series $\sum \frac{(-1)^{n}}{(2 n+1)!}$ converges.
22. Using L'Hôpital's rule, we have

$$
\lim _{n \rightarrow \infty} \frac{\ln n}{\ln (\ln n)}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{n \ln n}}=\lim _{n \rightarrow \infty} \ln n=\infty
$$

Therefore, the series $\sum \frac{\ln n}{\ln (\ln n)}$ diverges.
23. Since \sqrt{x} is a strictly increasing function, the inequality $n^{3}<n(n+1)(n+2)$ implies $n^{3 / 2}<\sqrt{n(n+1)(n+2)}$ and

$$
0<\frac{1}{\sqrt{n(n+1)(n+2)}}<n^{-3 / 2}
$$

Because $\sum n^{-3 / 2}$ converges (it's a p-series with $p=3 / 2>1$), the comparison test implies that the series $\sum \frac{1}{\sqrt{n(n+1)(n+2)}}$ also converges.
24. For $n \geq 2$, the function $f(n)=\frac{1}{2} n^{2}-1$ is positive; $f^{\prime}(n)=n$ is positive and $f(2)=1$. Adding $\frac{1}{2} n^{2}$ to both sides of the inequality $0<\frac{1}{2} n^{2}-1$ yields $\frac{1}{2} n^{2}<n^{2}-1$ for $n \geq 2$. Since the square root function is strictly increasing, we have $\frac{1}{\sqrt{2}} n<\sqrt{n^{2}-1}$ and

$$
\frac{1}{n \sqrt{n^{2}-1}}<\frac{1}{\sqrt{2} n^{2}}
$$

for $n \geq 3$. Since $\sum \frac{1}{\sqrt{2} n^{2}}$ converges (it's a p-series with $p=2>1$), the comparison test implies that $\sum \frac{1}{n \sqrt{n^{2}-1}}$ also converges.
25. Using L'Hôpital's rule, we have

$$
\lim _{n \rightarrow \infty} \frac{3 \sqrt{n+1}}{\sqrt{n}+1}=\lim _{n \rightarrow \infty} \frac{\frac{3}{2 \sqrt{n+1}}}{\frac{1}{2 \sqrt{n}}}=3 \sqrt{\lim _{n \rightarrow \infty} \frac{n}{n+1}}=3 \neq 0
$$

Therefore, $\lim _{n \rightarrow \infty}(-1)^{n+1} \frac{3 \sqrt{n+1}}{\sqrt{n}+1} \neq 0$ which implies that the series $\sum(-1)^{n+1} \frac{3 \sqrt{n+1}}{\sqrt{n}+1}$ diverges.
26. If $f(n)=\ln (1+1 / n)$ then

$$
f^{\prime}(n)=\left(\frac{1}{1+\frac{1}{n}}\right)\left(-\frac{1}{n^{2}}\right)=-\left(\frac{1}{n^{2}+n}\right) .
$$

When $n>0, f^{\prime}(n)<0$ and therefore $f(n)$ is decreasing. Moreover,

$$
\lim _{n \rightarrow \infty} \ln \left(1+\frac{1}{n}\right)=\ln 1=0
$$

and hence the alternating series test implies $\sum(-1)^{n} \ln \left(1+\frac{1}{n}\right)$ converges.
27. If n is a positive integer then $\cos (n \pi)=(-1)^{n}$. Clearly

$$
\frac{1}{n+1}<\frac{1}{n} \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

Therefore, the alternating series test implies that the series $\sum \frac{\cos n \pi}{n}$ converges.
28. For $n \geq 3$, the function $f(n)=\frac{1}{2} n^{3}-5$ is positive; $f^{\prime}(n)=\frac{3}{2} n^{2}$ is positive and $f(3)=\frac{27}{2}-5>0$. Adding $\frac{1}{2} n^{3}$ to both sides of the inequality $0<\frac{1}{2} n^{3}-5$ yields $\frac{1}{2} n^{3}<n^{3}-5$ which implies

$$
\frac{1}{n^{3}-5}<\frac{2}{n^{3}}
$$

for $n \geq 3$. Since $\sum 2 n^{-3}$ converges (it's a p-series with $p=3>1$), the comparison test implies that $\sum \frac{1}{n^{3}-5}$ also converges.
29. If $f(n)=\left(n^{2}+2 n+1\right)^{-1}=(n+1)^{-2}$ then $f^{\prime}(n)=-2(n+1)^{-3}$. When $n>0$, $f^{\prime}(n)<0$ and $f(n)$ is decreasing. Moreover,

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}+2 n+1}=0
$$

and therefore the alternating series test implies $\sum \frac{(-1)^{n-1}}{n^{2}+2 n+1}$ converges.
30. For all $n \geq 1$, we have
$\frac{(2 n)!}{2^{n} \cdot n!\cdot n}=\frac{(2 n) \cdot(2 n-1) \cdots \cdots(n+1)}{2^{n} n}=\left(\frac{2 n}{2 n}\right)\left(\frac{2 n-1}{2}\right) \cdots\left(\frac{n+1}{2}\right) \geq 1$.
Hence $\lim _{n \rightarrow \infty}(-1)^{n} \frac{(2 n)!}{2^{n} \cdot n!\cdot n} \neq 0$ and the series $\sum(-1)^{n} \frac{(2 n)!}{2^{n} \cdot n!\cdot n}$ diverges.
31. Since $5^{n}<5^{n}+n$, we have

$$
\frac{1}{n+5^{n}}<\frac{1}{5^{n}} \text { which implies } \frac{2^{n+1}}{n+5^{n}}<\frac{2^{n+1}}{5^{n}}=2\left(\frac{2}{5}\right)^{n} .
$$

Because $2 / 5<1$ the geometric series $\sum 2\left(\frac{2}{5}\right)^{n}$ converges. Applying the comparison test, we conclude that $\sum \frac{2^{n+1}}{n+5^{n}}$ also converges. Finally, $\left|(-2)^{n+1}\right|=2^{n+1}$ so the absolute convergence test implies that the series $\sum \frac{(-2)^{n+1}}{n+5^{n}}$ converges.
32. Since $|\sin n|<1$, we have

$$
\left|\frac{(-1)^{n} \sin n}{n^{2}}\right| \leq \frac{1}{n^{2}}
$$

Since the series $\sum n^{-2}$ converges (it's a p-series with $p=2>1$), the comparison test implies that the series $\sum \frac{\sin n}{n^{2}}$ also converges. Finally, the absolute convergence test implies that $\sum(-1)^{n} \frac{\sin n}{n^{2}}$ converges.
33. Since $e^{n}<e^{n}+1$, we have

$$
\frac{2}{e^{n}+1}<\frac{2}{e^{n}}
$$

Since the series $2 \sum e^{-n}$ converges (it's a geometric series and $e^{-1}<1$), the comparison test implies that the series $\sum \frac{2}{e^{n}+1}$ also converges.
34. Since
$\lim _{n \rightarrow \infty} n \sin \left(\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\left(-\frac{1}{n^{2}}\right) \cos \left(\frac{1}{n}\right)}{-\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \cos \left(\frac{1}{n}\right)=\cos 0=1 \neq 0$,
the series $\sum n \sin \left(\frac{1}{n}\right)$ diverges.
35. Because $f(x)=\frac{1}{x(\ln x)^{p}}$ is positive, continuous and decreasing on $[2, \infty)$, we may apply the integral test. Since $p>1$, we have

$$
\begin{aligned}
\int_{2}^{\infty} \frac{1}{x(\ln x)^{p}} d x & =\lim _{b \rightarrow \infty}\left[\frac{1}{1-p}(\ln n)^{1-p}\right]_{0}^{b} \\
& =\frac{1}{p-1}(\ln 2)^{1-p}+\lim _{b \rightarrow \infty} \frac{1}{1-p}(\ln b)^{1-p} \\
& =\frac{1}{(p-1)(\ln 2)^{p-1}}
\end{aligned}
$$

and therefore the series $\sum \frac{1}{n(\ln n)^{p}}$ converges.
36. If $f(n)=(\sqrt{n}+\sqrt{n+1})^{-1}$ then

$$
f^{\prime}(n)=-(\sqrt{n}+\sqrt{n+1})^{-2}\left(\frac{1}{2 \sqrt{n}}+\frac{1}{2 \sqrt{n+1}}\right) .
$$

When $n>0, f^{\prime}(n)<0$ and $f(n)$ is decreasing. Moreover,

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}+\sqrt{n+1}}=0
$$

so the alternating series test implies $\sum \frac{(-1)^{n}}{\sqrt{n}+\sqrt{n+1}}$ converges.

[^0]: ${ }^{1}$ If $f(x)=\frac{\ln x}{x}$, then $f^{\prime}(x)=\frac{1-\ln x}{x^{2}}$. It follows that $f(x)$ has a unique critcal point at $x=e$. Since $f^{\prime}(x)>0$ when $x<e$ and $f^{\prime}(x)<0$ when $x>e$, the first derivative test implies that $f(x)$ has a global maximum at e. Hence, $\frac{\ln x}{x}=f(x) \leq f(e)=\frac{\ln e}{e}<1$ which yields $\ln x<x$ for all $x>0$.

