
Strategy for Testing Series: Solutions

1. Since (−5)−n = (−1/5)n, this is a geometric series. Because |−1/5| < 1, it converges.

2. Since n2 < n2 + 6n = n(n + 6) for all n ≥ 0, we have

1

n(n + 6)
<

1

n2
.

Because
∑

1/n2 converges (it’s a p-series with p = 2 > 1), the comparison test

implies that
∑

1/(n(n + 6)) also converges.

3. Clearly, the sequence an = 1/(50n) is decreasing and converges to 0. Thus, the

alternating series test implies that
∑

(−1)n+1an converges.

4. Using l’Hôpital’s rule, we have

lim
n→∞

√
n

ln n
= lim

n→∞

1
2
√

n

1
n

= lim
n→∞

√
n

2
= ∞ .

Hence, the limn→∞(−1)n
√

n
lnn

doesn’t exist and therefore the series
∑

(−1)n+1
√

n
ln n

di-

verges.

5. Applying the ratio test, we have

lim
n→∞

rn+1

(n+1)r

rn

nr

= lim
n→∞

rnr

(n + 1)r = lim
n→∞

r

(

n

n + 1

)r

= r < 1 ,

and therefore the series converges.

6. If f(n) = (n2 − n)−1/2, then f ′(n) = −1
2
(n2 − n)−3/2(2n − 1). Thus, when n > 1,

f ′(n) < 0 and f(n) is decreasing. Moreover, we have

lim
n→∞

f(n) = lim
n→∞

1
√

n(n − 1)
= 0 .

Therefore, the alternating series test implies
∑

1/
√

n(n − 1) converges.

7. Since n3 < n3 + 2, we have
√

n ln(n)

n3 + 2
<

√
n ln(n)

n3
.

Furthermore, because ln(n) < n for all n > 0 1, we obtain
√

n ln(n)

n3 + 2
<

√
nn

n3
= n−3/2 .

Now, the series
∑

n−3/2 converges (it’s a p-series with p = 3/2 > 1) and hence the

comparison test implies that the series
∑

√
n ln(n)
n3+2

also converges.

1If f(x) = ln x

x
, then f ′(x) = 1−lnx

x
2 . It follows that f(x) has a unique critcal point at x = e. Since

f ′(x) > 0 when x < e and f ′(x) < 0 when x > e, the first derivative test implies that f(x) has a global

maximum at e. Hence, ln x

x
= f(x) ≤ f(e) = ln e

e
< 1 which yields lnx < x for all x > 0.
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8. Since ex is a strictly increasing function, e1/n ≤ e for all n ≥ 1. Hence, we have

e1/n

n3/2
≤ e

n3/2
.

Since
∑

en−3/2 converges (it’s a p-series with p = 3/2 > 1), the comparison test

implies that
∑

e1/nn−3/2 also converges.

9. If f(n) = (n+2)(n+3)
(n+1)3

then

f ′(n) =
(2n + 5)(n + 1)3 − 3(n2 + 5n + 6)(n + 1)2

(n + 1)6
= −n2 + 8n + 13

(n + 1)4
.

When n ≥ 0, f ′(n) < 0 and f(n) is decreasing. Moreover,

lim
n→∞

f(n) = lim
n→∞

(n + 1)(n + 2)

(n + 1)3
= lim

n→∞

n2

n3
= 0 .

Therefore, the alternating series test implies
∑

(−1)n (n+1)(n+2)
(n+1)3

converges.

10. Since
nn

n!
=

(n

n

)

(

n

n − 1

) (

n

n − 2

)

· · ·
(n

2

)(n

1

)

> 1 ,

the limit limn→∞
(−1)nnn

n!
is not zero and hence the series

∑ (−1)nnn

n!
diverges.

11. For all n > 2, we have

n!

nn
=

(n

n

)

(

n − 1

n

) (

n − 2

n

)

· · ·
(

2

n

) (

1

n

)

<

(

2

n

) (

1

n

)

=
2

n2
.

Since
∑

2n−2 converges (it’s a p-series with p = 2 > 1), the comparison test implies

that
∑

n!
nn

converges. Finally, the absolute convergence test implies that the series
∑

(−1)n n!
nn

also converges.

12. Applying the ratio test, we have

lim
n→∞

en+1

(n+1)!

en

n!

= lim
n→∞

e

n + 1
= 0 < 1 ,

and hence the series
∑

en

n!
converges.

13. Applying the ratio test, we have

lim
n→∞

(n+1)2(n+1)!
(2n+2)!

n2n!
(2n)!

= lim
n→∞

(n + 1)2(n + 1)

(2n + 2)(2n + 1)n2
= lim

n→∞

n3

n4
= 0 < 1 ,

and therefore the series
∑

n2n!
(2n)!

converges.
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14. Since n! < n! + 2, we have
3n

n! + 2
<

3n

n!
.

Now, applying the ratio test to the series
∑

3n

n!
, we obtain

lim
n→∞

3n+1

(n+1)!

3n

n!

= lim
n→∞

3

n + 1
= 0 < 1, .

Thus, the series
∑

3n

n!
converges and the comparison test implies that

∑

3n

n!+2
also

converges.

15. Applying the ratio test, we have

lim
n→∞

n+1
(ln(n+1))n+1

n
(ln n)n

= lim
n→∞

n + 1

n ln(n + 1)
·
(

ln n

ln(n + 1)

)n

.

Since ln x is a strictly increasing function, ln n < ln(n + 1) and lnn
ln(n+1)

< 1. Hence,

0 ≤ lim
n→∞

n + 1

n ln(n + 1)
·
(

ln n

ln(n + 1)

)n

≤ lim
n→∞

n + 1

n ln(n + 1)
= lim

n→∞

1

ln(n + 1) + n
n+1

= 0 .

Therefore, limn→∞
n+1

n ln(n+1)
·
(

lnn
ln(n+1)

)n

= 0 < 1 and the series
∑

n
(ln n)n

converges.

16. Applying the ratio test, we have

lim
n→∞

(n+1)65n+1

(n+2)!

n65n

(n+1)!

= lim
n→∞

5(n + 1)6

n6(n + 2)
= lim

n→∞

5n6

n7
= 0 < 1 ,

and hence the series
∑

n65n

(n+1)!
converges.

17. Applying the ratio test, we have

lim
n→∞

en+1

(ln(n+1))n+1

en

(ln n)n

= lim
n→∞

e

ln(n + 1)

(

ln n

ln(n + 1)

)n

.

Because ln x is a strictly increasing function, ln n < ln(n + 1) and thus lnn
ln(n+1)

< 1.

It follows that

0 ≤ lim
n→∞

e

ln(n + 1)

(

ln n

ln n + 1

)n

≤ lim
n→∞

e

ln(n + 1)
= 0 .

Therefore, limn→∞
e

ln(n+1)

(

ln n
ln n+1

)n
= 0 < 1 and the series

∑

en

(ln n)n converges.

18. Since | sin(nπ/7)| ≤ 1, we have
∣

∣

∣

∣

sin(nπ/7)

n3

∣

∣

∣

∣

≤ 1

n3
.
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Because the series
∑

n−3 converges (it’s a p-series and p = 3 > 1), the comparison

test implies that the series
∑

∣

∣

∣

sin(nπ/7)
n3

∣

∣

∣
converges. Finally, the absolute convergence

test implies
∑ sin(nπ/7)

n3 converges.

19. Applying the ratio test, we have

lim
n→∞

∣

∣

∣

(−2)n+1

(n+1)!

∣

∣

∣

∣

∣

∣

(−2)n

n!

∣

∣

∣

= lim
n→∞

2

n + 1
= 0 < 1 ,

and therefore the series
∑ (−2)n

n!
converges.

20. For all positive integers n, we have
(

1 +
1

n

)n

≥ 1 .

It follows that limn→∞(−1)n
(

1 + 1
n

)n 6= 0 and hence the series
∑

(−1)n
(

1 + 1
n

)n

diverges.

21. Applying the ratio test, we have

lim
n→∞

∣

∣

∣

(−1)n+1

(2n+3)!

∣

∣

∣

∣

∣

∣

(−1)n

(2n+1)!

∣

∣

∣

= lim
n→∞

(2n + 1)!

(2n + 3)!
= lim

n→∞

1

(2n + 3)(2n + 2)
= 0 < 1 .

Therefore, the series
∑ (−1)n

(2n+1)!
converges.

22. Using L’Hôpital’s rule, we have

lim
n→∞

ln n

ln(ln n)
= lim

n→∞

1
n
1

n ln n

= lim
n→∞

ln n = ∞ .

Therefore, the series
∑

ln n
ln(ln n)

diverges.

23. Since
√

x is a strictly increasing function, the inequality n3 < n(n+1)(n+2) implies

n3/2 <
√

n(n + 1)(n + 2) and

0 <
1

√

n(n + 1)(n + 2)
< n−3/2 .

Because
∑

n−3/2 converges (it’s a p-series with p = 3/2 > 1), the comparison test

implies that the series
∑

1√
n(n+1)(n+2)

also converges.

24. For n ≥ 2, the function f(n) = 1
2
n2−1 is positive; f ′(n) = n is positive and f(2) = 1.

Adding 1
2
n2 to both sides of the inequality 0 < 1

2
n2 −1 yields 1

2
n2 < n2 −1 for n ≥ 2.

Since the square root function is strictly increasing, we have 1√
2
n <

√
n2 − 1 and

1

n
√

n2 − 1
<

1√
2n2
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for n ≥ 3. Since
∑

1√
2n2

converges (it’s a p-series with p = 2 > 1), the comparison

test implies that
∑

1
n
√

n2−1
also converges.

25. Using L’Hôpital’s rule, we have

lim
n→∞

3
√

n + 1√
n + 1

= lim
n→∞

3
2
√

n+1
1

2
√

n

= 3

√

lim
n→∞

n

n + 1
= 3 6= 0 .

Therefore, limn→∞(−1)n+1 3
√

n+1√
n+1

6= 0 which implies that the series
∑

(−1)n+1 3
√

n+1√
n+1

diverges.

26. If f(n) = ln(1 + 1/n) then

f ′(n) =

(

1

1 + 1
n

) (

− 1

n2

)

= −
(

1

n2 + n

)

.

When n > 0, f ′(n) < 0 and therefore f(n) is decreasing. Moreover,

lim
n→∞

ln

(

1 +
1

n

)

= ln 1 = 0 ,

and hence the alternating series test implies
∑

(−1)n ln
(

1 + 1
n

)

converges.

27. If n is a positive integer then cos(nπ) = (−1)n. Clearly

1

n + 1
<

1

n
and lim

n→∞

1

n
= 0 .

Therefore, the alternating series test implies that the series
∑

cos nπ
n

converges.

28. For n ≥ 3, the function f(n) = 1
2
n3 − 5 is positive; f ′(n) = 3

2
n2 is positive and

f(3) = 27
2
− 5 > 0. Adding 1

2
n3 to both sides of the inequality 0 < 1

2
n3 − 5 yields

1
2
n3 < n3 − 5 which implies

1

n3 − 5
<

2

n3

for n ≥ 3. Since
∑

2n−3 converges (it’s a p-series with p = 3 > 1), the comparison

test implies that
∑

1
n3−5

also converges.

29. If f(n) = (n2 + 2n + 1)−1 = (n + 1)−2 then f ′(n) = −2(n + 1)−3. When n > 0,

f ′(n) < 0 and f(n) is decreasing. Moreover,

lim
n→∞

1

n2 + 2n + 1
= 0 ,

and therefore the alternating series test implies
∑ (−1)n−1

n2+2n+1
converges.

30. For all n ≥ 1, we have

(2n)!

2n · n! · n =
(2n) · (2n − 1) · · · · · (n + 1)

2nn
=

(

2n

2n

) (

2n − 1

2

)

· · ·
(

n + 1

2

)

≥ 1 .

Hence limn→∞(−1)n (2n)!
2n·n!·n 6= 0 and the series

∑

(−1)n (2n)!
2n·n!·n diverges.
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31. Since 5n < 5n + n, we have

1

n + 5n
<

1

5n
which implies

2n+1

n + 5n
<

2n+1

5n
= 2

(

2

5

)n

.

Because 2/5 < 1 the geometric series
∑

2
(

2
5

)n
converges. Applying the comparison

test, we conclude that
∑

2n+1

n+5n also converges. Finally, |(−2)n+1| = 2n+1 so the

absolute convergence test implies that the series
∑ (−2)n+1

n+5n
converges.

32. Since | sin n| < 1, we have
∣

∣

∣

∣

(−1)n sin n

n2

∣

∣

∣

∣

≤ 1

n2
.

Since the series
∑

n−2 converges (it’s a p-series with p = 2 > 1), the comparison test

implies that the series
∑

sinn
n2 also converges. Finally, the absolute convergence test

implies that
∑

(−1)n sin n
n2 converges.

33. Since en < en + 1, we have
2

en + 1
<

2

en
.

Since the series 2
∑

e−n converges (it’s a geometric series and e−1 < 1), the compar-

ison test implies that the series
∑

2
en+1

also converges.

34. Since

lim
n→∞

n sin

(

1

n

)

= lim
n→∞

sin
(

1
n

)

1
n

= lim
n→∞

(

− 1
n2

)

cos
(

1
n

)

− 1
n2

= lim
n→∞

cos

(

1

n

)

= cos 0 = 1 6= 0 ,

the series
∑

n sin
(

1
n

)

diverges.

35. Because f(x) = 1
x(ln x)p is positive, continuous and decreasing on [2,∞), we may apply

the integral test. Since p > 1, we have

∫ ∞

2

1

x(ln x)p
dx = lim

b→∞

[

1

1 − p
(ln n)1−p

]b

0

=
1

p − 1
(ln 2)1−p + lim

b→∞

1

1 − p
(ln b)1−p

=
1

(p − 1)(ln 2)p−1
,

and therefore the series
∑

1
n(ln n)p

converges.

36. If f(n) = (
√

n +
√

n + 1)−1 then

f ′(n) = −(
√

n +
√

n + 1)−2

(

1

2
√

n
+

1

2
√

n + 1

)

.
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When n > 0, f ′(n) < 0 and f(n) is decreasing. Moreover,

lim
n→∞

1√
n +

√
n + 1

= 0 ,

so the alternating series test implies
∑ (−1)n

√
n+

√
n+1

converges.


