Chapter 1 Test

Date: \_\_\_\_\_\_ Per: \_\_\_\_\_

## You may not use a calculator... Good Luck!

1. Evaluate the following limits by using the graph of the function



(a) 
$$\lim_{x \to -4^+} f(x) =$$

(b) 
$$\lim_{x\to -4^-} f(x) =$$

(c) 
$$\lim_{x \to -4} f(x) =$$

2. Suppose you are given  $\lim_{x\to c} f(x) = -7$  and  $\lim_{x\to c} g(x) = 14$ , calculate the following limits:

(a) 
$$\lim_{x\to c} [f(x)g(x)] =$$

(b) 
$$\lim_{x \to c} -9f(x) =$$

(c) 
$$\lim_{x\to c} \frac{f(x)}{g(x)} =$$

(d) 
$$\lim_{x\to c} g(x)^2 =$$

**Evaluate the following limits** 

3. 
$$\lim_{x\to 0} \frac{-2(1-\cos x)}{x}$$

4. 
$$\lim_{x\to 0^-} x^4 - \frac{1}{x}$$

5. 
$$\lim_{x\to\pi} \tan\left(\frac{5x}{6}\right)$$

6. 
$$\lim_{x \to -3} \frac{5x+15}{x^2-2x-15}$$

7. 
$$\lim_{x \to 4^+} \sqrt{16 - x^2}$$

8. 
$$\lim_{x\to 6^+} \frac{x-8}{-x+6}$$

9. 
$$\lim_{x\to 0} \frac{\sin(3x)\cos(x)}{3x}$$

10. 
$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - (x + \Delta x) - 6 - (x^2 - x - 6)}{\Delta x}$$

Discuss the continuity of each function. Be sure to clearly justify your answers. If there is discontinuity, specify whether it is removable or not, and where it occurs.

| 11. $f(x) = \frac{x^2 - 25}{x^2 - 15x + 50}$                           |  |
|------------------------------------------------------------------------|--|
| 12. $f(x) = \begin{cases} 3 - x, & x \neq 1 \\ 0, & x = 1 \end{cases}$ |  |
| 13. $f(x) = \sin(x) - 4x^2$                                            |  |

14. Find the value of 
$$a$$
 such that  $f(x) = \begin{cases} 5, & x \leq 3 \\ ax - 7, & x > 3 \end{cases}$  is everywhere continuous.

15. Use the Intermediate Value Theorem to show that  $f(x) = 2x^3 - 5x^2 - 10x + 5$  has a zero in the interval [-1,2].