AP CALCULUS Worksheet 5.3 Derivatives of Inverse Functions

1)

If $f(x) = x^3 + x$ and h(x) is the inverse of f(x), then h'(2) is A) $\frac{1}{13}$ B) $\frac{1}{4}$ C) 1 D) 4 E) 13

A)
$$\frac{1}{13}$$

B)
$$\frac{1}{4}$$

2)

Let f be a differentiable function such that f(3) = 15, f'(3) = -8, and f'(6) = -2, f(6) = 3The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of g'(3)?

A)
$$-\frac{1}{2}$$

B)
$$-\frac{1}{8}$$

C)
$$\frac{1}{6}$$

D)
$$\frac{1}{3}$$

A)
$$-\frac{1}{2}$$
 B) $-\frac{1}{8}$ C) $\frac{1}{6}$ D) $\frac{1}{3}$ E) The value of $g'(3)$ cannot be determined

from the information given.

3)

Use your calculator to determine the derivative of the inverse function of f(x) at x = 4where $f(x) = x^5 + x^3 + 2x - 2$.

4) Suppose f is a one-to-one function, which is differentiable for all real numbers x. The table below gives some of the values of f(x) and f'(x):

table below gives						
	x	f(x)	f'(x)			
	1	2	7 6 7			
	2	3	$\frac{7}{6}$			
	3	5				
	4	10	$\frac{6}{43}$			

- (a) Write an equation of the tangent line, T_1 , to the function
- f(x) at x = 3.(b) Write an equation of the normal line, N_1 , to the function f(x) at x = 3.(c) Write an equation of the tangent line, T_2 , to the function $f^{-1}(x) \text{ at } x = 3.$

5)

The function used in Problems 4 and 5 is $f(x) = \frac{1}{3}x^3 - \frac{3}{3}x^2 + \frac{19}{6}x$.

(a)
$$f'(0) =$$
_____.

(b) If
$$g(x) = f^{-1}(x)$$
, then $g'(0) =$ _____

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

		_		
x	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

- (a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.
- (b) Explain why there must be a value c for 1 < c < 3 such that h'(c) = -5.
- (c) Let w be the function given by $w(x) = \int_1^{g(x)} f(t) dt$. Find the value w'(3).
- (d) If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y = g^{-1}(x)$ at x = 2.

⁽c) Write an equation for the normal line to g(x) at x = 0.