6-3 Worksheet

Problems

- 1. Solve the differential equation $\frac{dy}{dx} = \sqrt{x}y$.
- 2. Solve the differential equation $y \ln x xy' = 0$.
- 3. Find the particular solution of the differential equation $\frac{du}{dv} = uv\sin v^2$, u(0) = 1.
- 4. Find the orthogonal trajectories of the family $y = Ce^{x}$.
- 5. Find the orthogonal trajectories of the family $x^2 = Cy$.
- **6.** Verify that $y = \frac{L}{1 + be^{-kt}}$ satisfies the logistic differential equation $\frac{dy}{dt} = ky\left(1 \frac{y}{L}\right)$.
- 7. Solve the logistic differential equation $\frac{dy}{dt} = y\left(1 \frac{y}{36}\right), y(0) = 4$.
- **8.** Solve the logistic differential equation $\frac{dy}{dt} = \frac{4y}{5} \frac{y^2}{150}$, y(0) = 8.
- 9. At time t = 0, a bacterial culture weighs 1 gram. Two hours later, the culture weighs 4 grams. The maximum weight of the culture is 20 grams. Write a logistic equation that models the weight of the bacterial culture. Then, use your model to find the weight after 5 hours.
- 10. Write the differential equation that models the following verbal statement: The rate of change of y with respect to x is proportional to the difference between y and 4.

Solutions

1.
$$\frac{dy}{y} = \sqrt{x} \, dx \Rightarrow \int \frac{dy}{y} = \int \sqrt{x} \, dx$$
. So, we have $\ln|y| = \frac{2}{3} x^{\frac{3}{2}} + C_1 \Rightarrow y = e^{(\frac{2}{3})x^{\frac{3}{2}} + C_1} = Ce^{(\frac{2}{3})x^{\frac{3}{2}}}$.

2.
$$y \ln x = x \frac{dy}{dx} \Rightarrow \frac{\ln x}{x} dx = \frac{dy}{y} \Rightarrow \int \frac{\ln x}{x} dx = \int \frac{dy}{y}$$
. Hence, we have
$$\frac{1}{2} (\ln |x|)^2 + C_1 = \ln |y| \Rightarrow y = e^{\left(\frac{1}{2}\right)(\ln x)^2 + C_1} = Ce^{(\ln x)^2/2}. \text{ Note that } x > 0.$$

- 3. $\int \frac{du}{u} = \int v \sin v^2 dv \Rightarrow \ln |u| = -\frac{1}{2} \cos v^2 + C_1 \Rightarrow u = Ce^{-(\cos v^2)/2}.$ The initial condition gives $u(0) = 1 = Ce^{-1/2} \Rightarrow C = e^{1/2}.$ The particular solution is, therefore, $u = e^{1/2}e^{-(\cos v^2)/2} = e^{(1-\cos v^2)/2}.$
- 4. The given family of exponential functions is $y = Ce^x \Rightarrow y' = Ce^x = y$. The orthogonal trajectories satisfy $y' = -\frac{1}{y} \Rightarrow \frac{dy}{dx} = -\frac{1}{y} \Rightarrow \int y \, dy = -\int dx \Rightarrow \frac{y^2}{2} = -x + K_1$. Hence, the orthogonal trajectories are the family of parabolas $y^2 = -2x + K$.
- The given family of parabolas is $x^2 = Cy \Rightarrow 2x = Cy'$, and we can solve for y', as follows: $y' = \frac{2x}{C} = \frac{2x}{x^2} = \frac{2y}{x}$. The orthogonal trajectories satisfy the equation $\frac{dy}{dx} = -\frac{x}{2y} \Rightarrow 2\int y \, dy = -\int dx \Rightarrow y^2 = -\frac{x^2}{2} + K_1$. Hence, the orthogonal trajectories are the family of ellipses $x^2 + 2y^2 = K$.

6.
$$y = \frac{L}{1 + be^{-kt}} = L\left(1 + be^{-kt}\right)^{-1} \Rightarrow y' = -L\left(1 + be^{-kt}\right)^{-2}\left(-kbe^{-kt}\right)$$
. This can be rearranged as follows:

$$y' = -L\left(1 + be^{-kt}\right)^{-2} \left(-kbe^{-kt}\right)$$

$$= k\left[\frac{L}{1 + be^{-kt}}\right] \left[\frac{1}{1 + be^{-kt}} \left(be^{-kt}\right)\right]$$

$$= ky\left[\frac{1 + be^{-kt} - 1}{1 + be^{-kt}}\right]$$

$$= ky\left[1 - \frac{1}{1 + be^{-kt}}\right]$$

$$= ky\left[1 - \frac{L}{L\left(1 + be^{-kt}\right)}\right] = ky\left(1 - \frac{y}{L}\right).$$

7. For this equation, k = 1 and L = 36. Therefore, the solution is $y = \frac{L}{1 + be^{-kt}} = \frac{36}{1 + be^{-t}}$. We determine P by using the initial condition:

$$4 = \frac{36}{1+b} \Rightarrow b = 8$$
. Hence, the solution is $y = \frac{36}{1+8e^{-t}}$.

8. We can rewrite the equation as $\frac{dy}{dt} = \frac{4}{5}y\left(1 - \frac{y}{120}\right)$. For this equation, $k = \frac{4}{5} = 0.8$ and L = 120. Therefore,

the solution is
$$y = \frac{L}{1 + be^{-kt}} = \frac{120}{1 + be^{-0.8t}}$$
.

We determine b by using the initial condition:

$$8 = \frac{120}{1+b} \Rightarrow b = 14. \text{ Hence, the solution is } y = \frac{120}{1+14e^{-0.8t}}.$$

9. The model is $y = \frac{L}{1 + be^{-kt}}$, L = 20, y(0) = 1, y(2) = 4. Hence, $y = \frac{20}{1 + be^{-kt}}$.

$$y(0) = 1 \Rightarrow 1 = \frac{20}{1+b} \Rightarrow b = 19$$
. $y(2) = 4 \Rightarrow 4 = \frac{20}{1+19e^{-2k}}$. Solving for k ,

$$1+19e^{-2k}=5 \Rightarrow e^{-2k}=\frac{4}{19} \Rightarrow -2k=\ln\frac{4}{19} \Rightarrow k=\frac{1}{2}\ln\frac{19}{4}\approx 0.7791$$
. The logistic model is

$$y = \frac{20}{1 + 19e^{-0.7791t}}$$
. At $t = 5, y \approx 14.43$ grams.

10.
$$\frac{dy}{dx} = k(y-4)$$
.