6-3 Worksheet

Problems

- 1. Solve the differential equation $\frac{dy}{dx} = \sqrt{x}y$.
- 2. Solve the differential equation $y \ln x xy' = 0$.
- 3. Find the particular solution of the differential equation $\frac{du}{dv} = uv\sin v^2$, u(0) = 1.
- 4. Find the orthogonal trajectories of the family $y = Ce^{x}$.
- 5. Find the orthogonal trajectories of the family $x^2 = Cy$.
- **6.** Verify that $y = \frac{L}{1 + be^{-kt}}$ satisfies the logistic differential equation $\frac{dy}{dt} = ky\left(1 \frac{y}{L}\right)$.
- 7. Solve the logistic differential equation $\frac{dy}{dt} = y\left(1 \frac{y}{36}\right), y(0) = 4$.
- **8.** Solve the logistic differential equation $\frac{dy}{dt} = \frac{4y}{5} \frac{y^2}{150}$, y(0) = 8.
- 9. At time t = 0, a bacterial culture weighs 1 gram. Two hours later, the culture weighs 4 grams. The maximum weight of the culture is 20 grams. Write a logistic equation that models the weight of the bacterial culture. Then, use your model to find the weight after 5 hours.
- 10. Write the differential equation that models the following verbal statement: The rate of change of y with respect to x is proportional to the difference between y and 4.